

Sensors And Image Processing

Craig Poling
Chief Technology Officer
Sentek Systems
craigpoling@senteksystems.com
(952) 500-3533

Platforms

- Handheld
- Manned/Unmanned Ground Vehicles
- Phenotyping Robots
- Blimps
- Multi-rotor UAVs
- Small Fixed-Wing UAVs
- Manned Aircraft
- Satellites

Platform and sensor choices are driven by multiple factors

- The physical traits to be measured
- The frequency of measurements
- Required spatial resolution and spectral bands
- Required accuracy and confidence level

Handheld Sensors

- Sensors: SPAD, CropScan, CropCircle, GreenSeeker, Apogee MC-100, Handheld Spectrometers, LAI-2200, ACCUPAR LP-80, etc.
- Data Products: Single-point / Local-canopy VI measurements

- A person takes every measurement very labor intensive
- Small sample sizes and prone to human error

Ground-Vehicle-Mounted Sensors

- CropCircle, GreenSeeker, Yara N-Sensor, Force-A Multiplex, etc.
- Local canopy measurements (average over many plants)
- Data Products: Low-resolution Vegetation Index maps (shapefiles)

 Measurements taken continuously - Requires driving over or alongside sensing area. Not ideal for frequent measurements. Low spatial resolution mapping.

Phenotyping Robots

- LemnaTec Field Scanalyzer, Others?
- Plant-level sensing with multiple active and passive sensors
- Data products: VNIR/SWIR/LWIR Imaging, LIDAR, fluorescence

- Near-continuous, automated sensing in field conditions.
- Cost limits scale of application.

Blimps

- Few or no off-the-shelf products for agriculture
- Sensors: Similar to larger fixed-wing or multi-rotor platforms

- Pros: High payload capacity (many sensors at once), long endurance
- Cons: Some sensors and data products need motion or multiple viewpoints; not possible if tethered. Difficult to manage and poor in wind.

Multi-Rotor UAVs

- Vehicles: 3DR, DJI, Parrot, etc.
- Multi-Spec Sensors: Sentek GEMS, RedEdge, Sequoia, Tetracam, Sentera, SlantRange, standard and modified RGB cameras, FLIR, etc.
- Hyper-Spec Sensors: Headwall Micro-Hyperspec, Resonon Pika, Specim, Imec, Neo Hyspex, Rikola, Bodkin, Bayspec, Pixelteq, Cubert, etc.
- Data products: Orthomosaics, DEMs, NDVI/VI maps, Thermal pics, etc.

- High-resolution mapping, but less detailed than phenotyping robots.
- Low-cost. Good for frequent monitoring of medium-sized areas.
- Plot-scale or plant-scale analysis depending on sensor and configuration.

Small Fixed-Wing UAVs

- Vehicles: Hawkeye Systems, AgEagle, SenseFly, PrecisionHawk, HoneyComb, Sentera, Trimble, etc.
- Sensors + Data Products: Same as for small multi-rotor UAVs

- Longer endurance than multi-rotors, but often lower-resolution results.
- Often more expensive than multi-rotors. Good for monitoring larger areas.
- More difficult to use than multi-rotors Manual takeoff and landing, flight planning must be aware of wind.

Manned Aircraft

- Small planes equipped with high-res RGB/NIR or modified RGB cameras for NDVI. Usually provided as a service.
- NASA AVIRIS (By Request): 1-20 m GSD 224-band VNIR-SWIR imagery

- Can cover large areas at lower resolution.
- Somewhat expensive not well-suited for frequent monitoring.
- Wide range in quality, from poor to calibrated and excellent (AVIRIS).

Satellites - Continuous Coverage Constellations

- lacksquare Many small satellites every point on Earth is imaged every pprox 24 hours.
- Low-resolution, often poor-quality imagery, RGB or RGB+NIR only.

Satellites - Tasking Constellations

- Few satellites in a constellation Can revisit frequently, but limited coverage. Must be commanded to image a given area (\$).
- Better sensors up to 28-band multi-spec, high-res VNIR (30 cm GSD)

Current and Future Satellites

Satellite/Constellation	Active	Revisit Rate	Bands + GSD
ESA Sentinal-2	Now	5-10 days	VNIR: 10m, RE+SWIR: 20m Others: 60m
Planet - Dove	Now	1 day	RGB+NIR: 2.7-4.9 m
Planet - SkySat	Now	1 day	RGB+NIR: 2m, Pan: 0.86m
DigitalGlobe - WorldView	Now	1 day	RGB+NIR: 1.24m, Pan: 0.31m SWIR: 3.7m
ASI PRISMA (Italy)	2018		pprox 250-band VNIR+SWIR: 30m
IAI/ImageSat EROS C	2019		Competitive with Worldview
Urthecast Urthedaily	2019	1 day	13-band VNIR: 5m
DLR EnMAP (Germany)	2019	4 days	244-band VNIR+SWIR: 30m
Airbus/CNES Pleiades Neo	2020	1 day	RGB+NIR: 0.3m Pan: 0.2-0.3m
DigitalGlobe WorldView Legion + Scout	2020	0.025-1 days	Maintain leadership position

PlanetScope Dove Satellite (3.7 m GSD)

Sentek GEMS RGB Imagery (from 216 feet, 0.032 m GSD)

Sentek GEMS Elevation Map (from 216 feet, 0.032 m GSD)

PlanetScope Dove Satellite (3.7 m GSD)

Sentek GEMS RGB Imagery (from 216 feet, 0.032 m GSD)

Sentek GEMS Elevation Map (from 216 feet, 0.032 m GSD)

Sentek GEMS RGB Imagery (from 105 feet, 0.016 m GSD)

PlanetScope RapidEye-5 Satellite (6.5 m GSD)

Sentek GEMS RGB Imagery (from 305 feet, 0.045 m GSD)

Data Product Comparison - Highest Res From a Drone

Sentek GEMS RGB Imagery (from 15 feet 0.002 m GSD)

Data Product Comparison - Highest Res From a Drone

Sentek GEMS NIR Imagery (from 15 feet 0.002 m GSD)

Data Product Comparison - Highest Res From a Drone

Sentek GEMS NDVI Imagery (from 15 feet 0.002 m GSD)

Data Product Comparison - Highest Res From a Satellite

Digital Globe WorldView-3 Pan-Sharpened RGB (0.3 m GSD)

Min order is 100 km 2 . 1 image at \approx 30 cm GSD with < 5% clouds is \$4,325. (That's only 17.5 cents/acre!)

Typical Image Processing And Analysis

- Build 3D scene reconstruction from collected images
- Build calibrated multi-spectral orthomosaics from images and DEM
- Extract sub-images for each plot in trial
- Reduce to plot level averages of irradiance or reflectance
- Compute VI (e.g. Red NDVI) for each plot
- Fit regression model connecting VI to relevant agronomic parameter

Sentek GEMS RGB Imagery

Sentek GEMS NIR Imagery

Sentek GEMS NDVI Imagery

Sensors and Image Processing

Different sensors and platforms are good for different traits

Rule of thumb: The smaller the features, the closer you must be to the plant.

- Phenotyping bots: image each leaf and build 3D models of each plant.
- Drones: plant/plot-scale sensing.
- Manned aircraft and high-res satellites: plot/field-scale sensing.
- Low-res satellites: field-scale sensing.

Questions

- What traits are most important to potato breeders?
- How are these traits measured today?
- What are the deficiencies of current measurement methods?
- Which traits are good candidates for remote sensing?
- What is the status of automated post-processing software for physical trait extraction from remote sensing imagery?
- What measurements can be meaningfully compared across phenotypes?

Discussion

Barriers to wide adoption of remote sensing for potato production + breeding

- Automated and validated algorithms and equations for extracting physical traits and agronomic quantities of interest from remote sensing measurements
- Quantitative proof of growers return on investment
- Ease of use
- Post-processing speed and reliability
- System reliability
- Scalability to large areas and large datasets
- System cost

Discussion

How can public sector extension contribute to overcoming these obstacles?

- Support field-scale remote sensing trials with growers
- Transition remote sensing methods and sensors for potato production and breeding from the lab to the field
 - Inform growers of the latest research results from independent public sector research trials

Discussion

How can public sector research contribute to overcoming these obstacles?

- Develop and scientifically validate remote sensing technologies
- Develop algorithms and equations which extract agronomic quantities of interest from remote sensing measurements
- Quantify the accuracy and reliability with which agronomic quantities of interest can be measured with different remote sensing technologies
- Conduct controlled research trials with measured ground truth to validate remote sensing methods, sensors, and algorithms
- Publish and disseminate the results on how well different sensor technologies performed in independent public sector research trials